
Unit A9:  System of Linear Equations in 2 or 3 Unknowns 
Objective:  (1) To solve a system of linear equations using Gaussian elimination. 
            (2) To recognize the existence and uniqueness of solution. 
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9.1 Gaussian elimination and 
Echelon form 

 

5     A matrix which satisfies the following 2 properties is said to be in Echelon form: 
(1) The 1st k rows are non-zero; 

the other rows are zero. 
(2) The 1st non-zero element in each non-zero row is 1, and it appears in a 

column to the right of the 1 st non-zero element of any preceding row. 
Example: 
The following 5 x 8 matrix is in Echelon form: 

        Students should be able to solve a system of linear equations in two or three 
unknowns by using Gaussian elimination, which reduces a matrix in Echelon form by 
elementary operations on its rows. 
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Example: 
Solve the system 
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The augmented matrix 
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The original system of equations is equivalent to the system of equations 
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which gives x1 = 1, x2 = 0, x3 = 1. 
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9.2 Existence and uniqueness  

of solution 
 

5     Students should be able to know the conditions for the existence and uniqueness 
of solution for a system of linear equations in two or three unknowns. 
    For a system of linear equations in two unknowns: 
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(i) If , the system has unique solution. Geometrically, the 

equations represent a pair of intersecting straight lines. 
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(ii) If  and , the system has no solution. 

Geometrically, the equations represent a pair of parallel (but not coincident) 
straight lines. 
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(iii) If det  and , the system has infinite number 

of solutions. Geometrically, the equations represent a pair of coincident 
straight lines. 
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For systems of equation in three unknowns, examples like the following should be 
mentioned. The corresponding geometrical meaning may be discussed if the students 
have grasped some ideas of three dimensional coordinate geometry.                   

(i) In solving the equations 

,
 

it is obvious that the third one is redundant. Teachers may discuss with the 
students on the method to obtain the solution 
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where λ is arbitrary. 
(ii) Solving equations like 

     which are inconsistent. 
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Following this manner, the conditions for the existence and uniqueness of 
solution for a system of equations in three unknowns may be given in more 
abstract terms. 
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